Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields
نویسندگان
چکیده
BACKGROUND Magnetic Resonance Imaging (MRI) is a crucial medical imaging technology for the screening and diagnosis of frequently occurring cancers. However, image quality may suffer from long acquisition times for MRIs due to patient motion, which also leads to patient discomfort. Reducing MRI acquisition times can reduce patient discomfort leading to reduced motion artifacts from the acquisition process. Compressive sensing strategies applied to MRI have been demonstrated to be effective in decreasing acquisition times significantly by sparsely sampling the k-space during the acquisition process. However, such a strategy requires advanced reconstruction algorithms to produce high quality and reliable images from compressive sensing MRI. METHODS This paper proposes a new reconstruction approach based on cross-domain stochastically fully connected conditional random fields (CD-SFCRF) for compressive sensing MRI. The CD-SFCRF introduces constraints in both k-space and spatial domains within a stochastically fully connected graphical model to produce improved MRI reconstruction. RESULTS Experimental results using T2-weighted (T2w) imaging and diffusion-weighted imaging (DWI) of the prostate show strong performance in preserving fine details and tissue structures in the reconstructed images when compared to other tested methods even at low sampling rates. CONCLUSIONS The ability to better utilize a limited amount of information to reconstruct T2w and DWI images in a short amount of time while preserving the important details in the images demonstrates the potential of the proposed CD-SFCRF framework as a viable reconstruction algorithm for compressive sensing MRI.
منابع مشابه
Sparse Reconstruction of Compressed Sensing Multi-spectral Data using Cross-Spectral Multi-layered Conditional Random Field Model
The broadband spectrum contains more information than what the human eye can detect. Spectral information from different wavelengths can provide unique information about the intrinsic properties of an object. Recently compressed sensing imaging systems with low acquisition time have been introduced. To utilize compressed sensing strategies, strong reconstruction algorithms that can reconstruct ...
متن کاملCompressive Sensing-based Mrireconstruction in Fractional Fourier Domain
Compressive sensing is an emerging field in digital signal processing. It introduce a new technique to image reconstruction from less amount of data. This methodology reduces imaging time in MRI. Compressive sensing exploit the sparsity of the signal. In this paper Fractional Fourier is used as sparsifying transform and signal sampled by random sampling . Run length encoding is applied to code ...
متن کاملBlock-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملForming A Random Field via Stochastic Cliques: From Random Graphs to Fully Connected Random Fields
Random fields have remained a topic of great interest over past decades for the purpose of structured inference, especially for problems such as image segmentation. The local nodal interactions commonly used in such models often suffer the short-boundary bias problem, which are tackled primarily through the incorporation of long-range nodal interactions. However, the issue of computational trac...
متن کاملTRZASKO AND MANDUCA: HIGHLY UNDERSAMPLED MAGNETIC RESONANCE IMAGE RECONSTRUCTION VIA HOMOTOPIC L0-MINIMIZATION 1 Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic L0-Minimization
In clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in Compressive Sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some ...
متن کامل